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J. Phys. A: Math. Gen. 22 (1989) 3437-3445. Printed in the U K  

Tensors with icosahedral symmetry that are invariant under a 
certain wreath product: I1 

Thomas Scharf 
Lehrstuhl I1 fur  Mathematik, Universitat Bayreuth, Postfach 101251, D-8580 Bayreuth, 
Federal Republic of Germany 

Received 22 April 1988 

Abstract. Previously we considered a problem arising in the theory of quasicrystals pointed 
out to us by Trebin. It amounts to the computation of a basis of a subspace of @ “ E l 3 ,  
d E N  characterised by certain symmetries. We gave the solution for d 5 3. Now we are 
able to describe such invariants for arbitrary d. 

1. Introduction 

Recall the mathematical problem (Kerber and Scharf 1987). It is well known that the 
icosahedral group is isomorphic to the direct product of the symmetric group in two 
letters and the alternating group in five letters: I = S2 x A5, The corresponding sym- 
metry operations can be realised by orthogonal representations of type [ 12] # [3, 12]* 
(see James and Kerber (1981) for notations). Consider the tensor space (R3)02d,  d E N*. 
The wreath product S2 1 S d  acts on this space by permuting the indices, if we identify 
it with the subgroup of S2d  generated by 

(12), (13) (24), (135. .  . 2d -1 ) (246 . .  . 2d ) .  

Thus we obtain a representation of S2 I S,. On the other hand we have the natural 
representation ([12] f [3, 12)*)@2d of I on ( R 3 ) @ 2 d .  As the automorphisms of I commute 

3 @d with those of S2 1 &,we get a representation of I x S2 1 Sd = S2 x A, x S2 1 S d  on (R ) . 
The problem is to compute a basis of the space (R3)g:dAsxs21sd of S2XA5X 
S2 1 Sd-invariants for d E N ” .  As we consider a direct product of groups, we have 

3 @2d 3 @2d 
(R )S2xA5xS21Sd = (((R I S 2  )S,lSd)A,. 

But the group S2 x {eA5}< I acts as *id on R3, whence it acts trivially on ( R 3 ) @ 2 d .  We 
may therefore restrict attention to the group A, x S2 1 S,. It is easy to see that (R )S21Sd 

is isomorphic to Symd(Sym2(R3)) as vector spaces (we denote by Sym,(-) the space 
of symmetric tensors of degree i ) .  The isomorphism is intertwining, if we consider the 
representation of A5 on Sym, (Sym2(W3)) induced by the representation of type [3, 12]* 
on R3 and if we restrict the representation on the space of Sz 1 Sd-invariants to AS. 
Note that we get a representation of type ([3, 2 ] 0 [ l 5 ] ) & A ,  on Sym2(W3) both for 
[3, 12]+ and [3, 12]-. Note also that the problem stated above can be reformulated as 
follows. Describe the @-)graded algebra s ~ m ( S y m ~ ( R ~ ) ) ~ , .  Each choice of a basis 
( b ,  , . , . , b6) of Sym,(R3) gives a matrix representation of AS.  This matrix representation 
induces a representation on RIXI ,  . . . , X,], the algebra of real polynomials in six 

3 @2d 
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indeterminates, such that the isomorphism of graded algebras-induced by X, H b,-is 
intertwining. Thus it suffices to restrict attention to R[X,, . . . , x,], and we are in the 
setup of classical invariant theory. The problem is to describe 

w, . . . , x6iA5 
the algebra of As-invariant polynomials in a suitable way. We shall do this in two ways: 

(i)  by giving a minimal system of homogeneous generators, i.e. a set of 
homogeneous polynomials generating this algebra which is of minimal length; 

(ii) by providing a good polynomial basis, i.e. homogeneous polynomials 

(SI, * * * 96; w l ,  * * * 9 

such that 
12 

R[Xl, * * X61.4, = @ R [ q l ,  * * 9 q61 w~ 
, = I  

the qi being algebraically independent. 

2. Choosing an appropriate basis 

The calculations in Kerber and Scharf (1987) used the canonical basis of Sym2(W3). 
But the geometry of the problem supplies a better one (see also Speiser 1923, p 132). 
Consider an icosahedron in R3 centred at the origin. The (six) lines through the origin 
and the vertices of the icosahedron are just the lines stabilised by the subgroups of 
A5 isomorphic to the dihedral group Dlo. Thus any g E As permutes the lines. An 
easy calculation gives the following proposition. 

2.1. Proposition. If we take vectors u , ( i  = 1, .  . . , 6 )  of length one such that {R u i / i  = 
1 , .  . . ,6} is the collection of said lines, then the tensors 

b, := v, 0 U, l S i S 6  

form a basis of Sym,(R3). Moreover, as we chose the representation on R3 to be 
orthogonal, this basis is permuted by the action of A,. 

Hence the intertwining mapping Xi H b, induces a permutation representation of AS 
on RIX1, , . . , x6] which we shall consider next. 

3. Permutation representations on RIXI,. . . , X,] 

Consider the symmetric group s6 in 6 letters. We have a natural representation of this 
group on R[xl,. . . , x6] simply by permuting the Xi. In this case the theory of 
S6-invariants is well known. 

3.1. Theorem. The algebra of S6-invariants is a polynomial algebra generated by six, 
algebraically independent, homogeneous polynomials 

~[xl,...,x61~,=~[ql,...,q6l 

where we can choose the elementary symmetric functions or the power sums, for 
example. 
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The action of A, also permutes the Xi. Thus we may identify, for our purposes, (the 
representations are faithful!) A, with a subgroup of s6. (It should be mentioned that 
this subgroup is not the ‘usual’ A, in s6 or one of its conjugates: any element of order 
three is the product of two disjoint 3-cycles.) 

First, information on the structure of A,-invariants is given by the following 
theorem. 

3.2. Theorem. 

R[xl ,  * * - 9 X 6 1 A ~  2 Rrx1 9 * 1 * 9 x61S6 

Moreover, RIXI, . . . , X 6 ] A 5  is a free and finitely generated RIX1, . . . , X6],,-module, 
i.e. there are homogeneous A,-invariant polynomials wl, . . . , w, such that any A,- 
invariant polynomial can uniquely be written as 

c Fl ’ w, 
I 

where the Fi are polynomials in the qi. (Hence ( q , ,  . . . , q6; wl, . . . , w,) is a good 
polynomial basis.) The number r and the degrees of the wi are, up to permutations, 
uniquely determined. We have 

r =n  deg(qi)/lAs/ = 12 
I 

and the following table of degrees: 

i 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  
deg(w,) 0 3 5 6 6 7 8 9 9 10 12 15 

(if deg( wl) S .  . . < deg( W I Z ) ) .  

Proofi Let R := RIX1, . . . , x6]. The inclusion is obvious. First we explicitely prove 
that RA5 is a finitely generated R,,-module (cf, for example, Springer 1977, lemmas 
2.4.3,4.1.2). Let p E R. Then p is a zero of the monic polynomial llgEs6 ( T  - D ( g ) p )  E 

R,,[ TI. Hence the finitely-generated algebra R is finitely-generated as Rs6-module (by 
the monomials X7l . . . Xg6, a, S IS61, for example). As Rs6 is a finitely generated algebra, 
it is Noetherian by the Hilbert basis theorem, and, again by the Hilbert basis theorem, 
so is the Rs6-module R. Hence the submodule RA5 is finitely generated. It follows 
that ( q ] , .  . . , q6) is a homogeneous system of parameters (Stgnley 1979, p 481). Thus 
RAs is free as Rs6-module (Stanley 1979, theorem 3.2). By Molien’s formula (Stanley 
1979, theorem 2.1), we are able to compute the PoincarC series PA5(T) simply from 
the eigenvalues of the representing automorphisms of A5 on 8, RX, (Conway et a1 
1985). If we choose a good polynomial basis ( q l , .  . . , q6; wl ,  . . . , w,), then it is easy 
to see that the PoincarC series is equal to ZJ Tdeg(wi)/IIl (1 - Tdeg(91)). Hence XJ Tdeg(w~)  = 
PAS( T) ll, (1 - Tdeg(91)) gives the number r and the degrees of the w,.  

As there is always one of the w, with degree 0, we have the following. 

3.3. Corollary. RIXI, . . . , &]A5 is generated by at most 17 homogeneous polynomials 
of degree less than or equal to 15. 
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4. Computing a basis 

In order to give a description of the algebra of invariants as proposed earlier we need 
some elementary facts, first from invariant theory. 

Every minimal system of homogeneous generators is irreducible in the sense that 
every proper subsystem will no more generate the whole algebra. As the algebra of 
invariants is graded R[X,, . . . , X6]AS=: A =e, A,, any irreducible system of 
homogeneous generators can be computed as follows. We start with i' ' ':= 0, G''':= { }. 
If i ' " ) ,  G'"' are already chosen, then we proceed the following way. If there is an j > 0 
with AJ # AJ n R[ G'")], we put i("+":= min{ i > i'"'JA, # A, n R[ G'")]} and enlarge G'"' 
by a basis of a vector space complement of A,o,+l) relative to A,c,i+i) n R[ G'"'] and call 
the new set G'"+'). Otherwise we stop. As A is finitely generated, it is obvious that 
the procedure will terminate. But it is not evident that the resulting set is already of 
minimal length. This is assured by the following proposition which also shows that a 
good polynomial basis can be computed by a similar algorithm. 

4.1. Proposition. (i) The notions of an irreducible system of homogeneous generators 
and of a minimal system of homogeneous generators coincide. Thus, any set of 
homogeneous generators contains one of minimal length. The degrees of the elements 
of any minimal system of generators are uniquely determined. More precisely: let A+ 
be the ideal generated by the homogeneous elements of positive degree. Then a 
sequence (a , ,  . . . , a,) of homogeneous elements in A+ is a minimal system of 
homogeneous generators, iff it is a basis of a (graded) vector space complement of A: 
in A,. 

(ii) Let ( w l , .  . . , w,) be a sequence of homogeneous, invariant polynomials. Then 
S 

R[X1,. .*,X61A5=@ R [ q l , * * * , q 6 1 w ~  
, = 1  

if and only if ( w, , . . . , w,) is a minimal system of homogeneous generators of the 
(graded) R [ q , ,  . . . , q6]-module RIX1,.  . . ,X6]AS, i.e. R I X I , .  . . , &]As is equal to 

((WI I i))@R[xl, * * * X61AS{fE R [ q l > .  . . 9 q6]1f(o) = 0) 
as vector space. 

Prooj In the case of (i) consider, in a more general context, a finitely generated graded 
R-algebra A with A,:=R and A+.rrO,,oA, (cf also Springer 1977, lemma 4.2.6). 
Hence R = A / A + .  Let .rr be the canonical homomorphism of graded A-modules 
A++A,/A:. As A+.rr(A+) = 0, A+/A: is, in a natural way, a graded R-vector space. 
It is easy to see that a sequence (a , )  of homogeneous elements in A+ is a minimal 
system of generators, iff ( . r ( a l ) )  is a homogeneous basis of the vector space A+/A:, 
iff (a , )  is a homogeneous basis of a vector space complement of A: in A+. Thus the 
theorems of linear algebra can be 'lifted' to A and (i) follows. 

Let R := R[X,, . . . , &]. To prove (ii) we only have to apply the preceding con- 
siderations to the R,,-module RASI From this it follows that (w,) is a minimal system 
of generators for this module, iff the sequence is a basis of a vector space complement 
of RAS{f€ Rs,lf(0) = 0) in RAS. Let (q , ,  . . . , q6; zl,. . . , z,) be a good polynomial basis. 
It exists according to Stanley (1979, theorem 3.2). Obviously the ( z , )  are a minimal 
system of generators for the R,,-module RAS. Thus, for any minimal system of 
homogeneous generators ( w, , . . . , w,) of this module, we have r = s and, after a suitable 
rearrangement, deg( z , )  = deg( w,), i = 1, . . . , r. As for arbitrary io E N the elements 



Tensors with icosahedral symmetry: II 3441 

( q )  . . . qjw,) ,  Z, 5 deg(q,) +deg(w,) = io, generate (R& as vector space, the sequence 
( q )  . . . qkz, ) ,  E, 5 deg(q,) +deg(z,) = io, is a basis, and both sets have the same cardinal- 
ity, ( q ,  , . . . , q6; wl,  . . . , w,) is also a good polynomial basis. This proves (ii). 

The proposition shows that we can solve (i)  and (ii) in § 1 simultaneously. It also 
proposes a way how this can be done. 

Because of theorem 3.2 and proposition 4.1 we only have to consider the spaces 
R[X,,. . . , XJZ, i = 1 , .  . . , 15, of homogeneous polynomials of degree i. Now, the 
action of AS on R[X,,  . . . , &]I also gives a permutation representation, for it permutes 
the basis X)  . . . Xk, i, +. . .+ i6 = i. 

We list some elementary facts on invariants of permutation representations. Let 
G be a finite group, D: G + G1( V )  a representation permuting the basis ( ul, . . . , U,) 
of a vector space V. It induces a group action of G on the set {U,, . . . , U,,}. Let B be 
the set of its orbits. 

4.2. Proposition. The orbit sums 
C U  O E B  

form a basis of the space of G-invariants V,. 

If H < G is a subgroup, then the G-orbits in { U,, . . . , U,,} may split. But we have the 
next proposition. 

4.3. Proposition. If O,,, is an H-orbit lying in a G-orbit O(,), then O(,) splits into at 
most /G/HI H-orbits. If L is a transversal of the left cosets G/H,  then the set of these 
orbits is equal to 

U€O 

{D(g)O(H)lg E L)* 

We recall that each orbit in {XYl . . . Xz6/ a,}  and every orbit sum can be parametrised 
by certain improper partitions into at most six parts (i.e. sixtuples of non-negative 
integers) (using [ a , ,  . . . , a61-X:' . . . X:6) and that the S6-invariants can be para- 
metrised by the proper partitions into six parts (i.e. sixtuples of non-negative integers 
arranged in descending order). Hence, using propositions 4.2 and 4.3, it is easy to 
describe a basis of each homogeneous component of R[X,, . . . , x 6 ] A , .  Computer-aided 
calculations gave us the following. 

4.4. Result. The orbit sums parametrised by 

~ 1 - [ L o , o , o , o , o l  q 2  - [2,0,0,0,0,01 

q 3  * [3,0,0,0,0,01 44- [4 ,0,0,0,0,01 

w1- [ O ,  o,o,o,  0901 wz-[L 1,1,0,0,01 
w3 - [2,2,0,1,0,01 w4-[3, 1, 190, 1701 

w5-[2,2,0,~,0,  11 w 6 ~ [ 5 , 1 , 1 , 0 , 0 , 0 1  

w7*[3,3,0, 1,0,11 w*-[2,5,1,1,0,01 
w9-[3,3,0,3,0,01 w10-[5, 3 ,1 ,1 ,0 ,01 

q 5  [5,0,0,0,0,01 46- i6, O, O, O, 0, 01 

wiit ,[ l ,3,2,5,  1,01 Wiz-[5,4,3,0,2, 11 
form a system with properties (ii) of $ 1. 
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The computations also yielded the following. 

4.5. Result. The polynomials q , ,  . . . , q6, w 2 ,  w 3 ,  w4, w6 of proposition 4.4 form a 
minimal system of homogeneous generators of the algebra of A,-invariants. Hence 
any such system has length 10 with degrees 1 ,2 ,3 ,3,4,5,6,6,7.  

This gives (i) of P 1. 

5. The six-dimensional case 

In order to explain the existence of icosahedral symmetry in quasicrystals one has to 
embed R3 into R6 in the following way (see Kramer 1985). 

Consider the natural six-dimensional representation p of the hyperoctahedral group 
R(6) = S2 1. S d .  Then we may identify the full icosahedral group I with a certain 
subgroup of a(6) (see Kramer 1985). By restricting to I the representation p splits 
into two irreducible components of dimensions three. We have 

p.11=([12]#[3, 12]+)@([1’]#[3, 12]-). 

We may now state the problem of describing 

Sym( Sym2(R6)) I 

the constructions being the same as in the three-dimensional case. As S2x{eAS} acts 
as *id on R6, hence trivial on Sym2(R6), we may restrict to 

Sym(Sym2(R6))A,. 

The well known representation theory of A, gives the following. 

It follows immediately that it is a subrepresentation of a representation of 
s6 x s6x s.5 x s 5 .  

PmoJ The character table of A, is well known (see, for example, Conway et al 1985). 
The orthogonality relations yield the decomposition into irreducible ones. The second 
statement is a consequence of the following remarks. 

(i) ([3,2]@[1’]).1 A, is the permutation representation appearing in the three- 
dimensional case. 

(ii) [3, 2].1A, is closely related to the permutation representation in (i). It is 
equivalent to the representation of case (i) modulo an A,-stable line. 

(iii) [4, 1]3.A, is the restriction of the well known representation of S, which is 
also a permutation representation modulo an A,-stable line. 
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This immediately gives the following. 

5.2. Corollary. Let A, act on s":= Sym2(R6)OROR such that the corresponding rep- 
resentation is oftype (3([3, 2]O[l51)O([4, l]O[15])).1A, and such that A, actstrivially 
on ROR. Then there exists a basis of 5 which is permuted by the elements of A , .  

As Sym,(R6) = s"/(ROR), there are 23 elements of Sym,(R6) being permuted by 
A,. (They are homomorphic images of the elements of the basis). 

5.3. Remark. We cannot expect to find a nice description of the invariants. 
(i) Any minimal system of homogeneous generators contains at least 35 elements. 

The maximal degree of an element of such a system is at least 10 (see also remark 5.6 
below). 

(ii) If (ql , . . . , q21 ; w ,  , . . . , w,)  is a good polynomial basis, then I'I, deg(q,) 5 273754. 
Hence 

r 3 2916 000 and max{deg( w,) I i }  3 34. 

(iii) It is also easy to see that (with respect to the decomposition 5.1) there is a 
good polynomial basis with 

r = (6!)4(5!)/60 = 746 496 000 and max{deg( w , )  1 i }  = 5 5 .  

Proof: Let Sym2(R6) =ez V,  be a decomposition into irreducible invariant subspaces 
according to proposition 5.1. From result 4.5 and Stanley (1979, ch 4) we conclude 
that a minimal system of homogeneous generators for Sym(V,)., consists of 1, 5, 9 
elements of degrees ( l ) ,  (2,3,4,5,  lo), (2 ,3 ,3 ,4 ,5,5,6,6,7) ,  if V,  is of type [1']J.A5, 
[4, 1].1A,, [3, 2]J.A,, respectively. But Sym(Sym2(R6))-.,@, Sym( v),  and we may 
embed the elements of this system by the natural inclusions Sym( V,) - Sym(Sym2(R6)). 
According to Popov (1983, proposition 1.3) we get a sequence that can be enlarged 
to a minimal system of homogeneous generators of Sym(Sym,(R6)),,. This gives (i). 

Consider the above decomposition 0, V,. From 3.2 and Stanley (1979, ch 4) we 
know that Sym( VI),+ has a good polynomial basis (cj l ) ,  , . , , c!:'; d',",  . . . , d i j ' )  with 
degree sequence (deg(cl")), being ( l ) ,  (2 ,3 ,4 ,5) ,  (2 ,3 ,4 ,5 ,6) ,  if V, is of type [l '].lAj, 
[4, 1]J.A5, [3, 2 ] J A j ,  respectively. It is then easy to see that the whole algebra of 
invariants has a good polynomial basis ( c1, . . . , c21 ; fl , . . . ,A ) ,  the (c,) ,  consisting of 
the elements c!" (via the obvious embedding). Thus the degree sequence deg(c,) is 
equal to 

(1 ,1 ,2 ,3,4,5,  2 ,3 ,4 ,5 ,6 ,2 ,3 ,4 ,5 ,6 ,2 ,3 ,4 ,5 ,6 )  

and (iii) follows from Stanley (1979, corollary 4.3, proposition 4.9) 

(ii) is a consequence of the following lemma. 

5.4. Lemma. Let D: G + G l (  V) be a representation of a finite group G on a n- 
dimensional complex vector space, let v E C be a primitive uth root of unity and choose 
go€ G such that v is an eigenvalue of D(g,) of multiplicity m. 

Then, for every good polynomial basis ( q1 , . . . , qn ; w, , . . . , w,) of Sym( V), , m S 

I{ i 1 U divides deg( qi)}/. 
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Prooj Let ( q , ,  . . . , qn ; w,, . . . , w,) be a good polynomial basis for Sym( V)G. Let xw 
be an irreducible character of G. From Molien’s formula (Stanley 1979, theorem 2.1) 
we obtain the PoincarC series of the corresponding isotypical component of Sym( V): 

As the irreducible characters and hence also the multiples ((Xw(l)/lG/)Xw) form a basis 
of the class functions Z(G) ,  there exist A, E C such that 

c L X w ( l ) / / G I X w  
w 

is the characteristic function of the conjugacy class of g; ’ .  Thus, if C denotes the 
number of elements of this set, we have 

(Note that Xw(g-’)/det(l - D(g)T)  is constant on conjugacy classes.) Hence there is 
a Pu( T )  which has a pole of order at least m at T = U. But from Stanley (1979, theorem 
3.10) we obtain 

x, Tdeg(wJ) ‘ ~ ( ~ ) = n ,  (1 - ~ d e g ( 9 , ) )  

As 1 - vdeg(qi) = 0, iff U divides deg(q,), and 1 - Tdeg(qi) has only simple zeros, the lemma 
follows. 

We finally examine the Poincari series. 
Molien’s formula yields the expansion in the following remark. 

5.5. Remark. 

PAT( T )  = 1 + 2 T  + 10 T 2  + 51 T3 + 234T4+ 1034T5 + 4206 T6 + 15602 T7 + 53510T8 

+ 170382T9 + 507422 TIo+ 1423610T” + 3785676TI2 + 9591910TI3 

+ 23266342 T’,+ 54243496 TI5 + O( TI‘). 

But we get more information by computing a ‘multigraded’ PoincarC series. Consider 
the decomposition 

~ym,(@) = V,O V,O V ~ O  V ~ O  V, 

into invariant subspaces of type ([1’]O[1’])1A5, [3 ,2]1A5,  [3,2].LA5, [3 ,2 ] JA5 ,  
[4, 11.1 A S ,  respectively. Then 

Sym(Sym2(R6))A52 Sym( VO)A,@ (g Sym( y ) )  A,. 

Sym( V,))A5 is a N4-graded algebra in a natural way and we may form the 
multigraded PoincarC series 

pAs( 9 T2 9 T3 9 T4) := c (( Sym( !!) A.) * * 9 T), 
( 1 ,  14) 

A multigraded version of Molien’s formula yields the next remark. 
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5.6. Remark. 

PAs(T1, T29 T 3 ,  T4)  

= 1 + ( T:+ T2T3 + TI T3 + T: + TI  T2 + T i  + T:) 

+ (2T:  + T:+ 2Ti+ 2 Ti + 2 T I  T3 T4+ 2 TIT:+ 2 T:T2 

+2TlT2T3+ T3T:+ T2T:+ TIT:+ T:T4+ T:T4 

+ T:T4+ 2 T2T:+ 2 TI  T:+ 2 T:T3 + 2 T:T3 + 2 TI  T2T4+ 2 T2 T3T4) 

+ (7 TI T:T3 + 5 T i  T2 T4+ 5 T2T: T4+ 5 T2T3 T:+ 5 T:  T3 T4 

+ 5 T I  T:T4+ 2T:+ 2 T:+ 3 TI  T i  + 6T: T: + 3 T: T2 

+2T:+2T!+ T3T:+ T2T:+ TlT:+3TlT:+3T2T: 

+ 3 T: T3 + 3 T:T3 + 6 T:T:+ 6 T: T: + 4T:T: 

+ 4T:T:+ 4T:T:+ 7 TI T2T: + 7 T: T2T3 + 5 T I  T3 T: 

+ 5 TI  T2 T:+ 5 T:T3 T4+ 5 T I  T:T4+ 3 T:  T4+ 3 T i  T, 

+ 3 T: T4 + 8 T,  T2 T3 T4) +terms of higher order. 

Specialising to TI = T2 = T3 = T4= T, i.e. to the gradation given by total degree, we 
obtain a PoincarC series whose expansion is 

1 + 7 T 2  + 33 T 3  + 142T4+ 617 T 5  + 2372 T6+ 8224T7+ O( T*) .  

From this we immediately conclude that a minimal system of homogeneous generators 
for Sym(Sym2(iW6)),, consists of more than 2307 elements. 

Note. Most of our calculations were made on a HP 9500 using Pascal programs and 
the MAPLE programming-system (Char et a1 1985). 
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